The Classification of Punctured-torus Groups
نویسنده
چکیده
Thurston’s ending lamination conjecture proposes that a finitelygenerated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus groups. These are free two-generator Kleinian groups with parabolic commutator, which should be thought of as representations of the fundamental group of a punctured torus. As a consequence we verify the conjectural topological description of the deformation space of punctured-torus groups (including Bers’ conjecture that the quasi-Fuchsian groups are dense in this space) and prove a rigidity theorem: two punctured-torus groups are quasi-conformally conjugate if and only if they are topologically conjugate.
منابع مشابه
Transcendental Ending Laminations
Yair Minsky showed that punctured torus groups are classified by a pair of ending laminations (ν − , ν+). In this note, we show that there are ending laminations ν+ such that for any choice of ν − , the punctured torus group is transcendental as a subgroup of PSL2C.
متن کاملConvergence and divergence of Kleinian punctured torus groups
In this paper we give a necessary and sufficient condition in which a sequence of Kleinian punctured torus groups converges. This result tells us that every exotically convergent sequence of Kleinian punctured torus groups is obtained by the method due to Anderson and Canary (Invent. Math. 1996). Thus we obtain a complete description of the set of points at which the space of Kleinian punctured...
متن کامل3 0 Ju l 2 00 2 ( 1 , 1 ) - knots via the mapping class group of the twice punctured torus
We develop an algebraic representation for (1, 1)-knots using the mapping class group of the twice punctured torus MCG2(T ). We prove that every (1, 1)-knot in a lens space L(p, q) can be represented by the composition of an element of a certain rank two free subgroup of MCG2(T ) with a standard element only depending on the ambient space. As a notable examples, we obtain a representation of th...
متن کاملA pr 2 00 4 ( 1 , 1 ) - knots via the mapping class group of the twice punctured torus Alessia
We develop an algebraic representation for (1, 1)-knots using the mapping class group of the twice punctured torus MCG2(T ). We prove that every (1, 1)-knot in a lens space L(p, q) can be represented by the composition of an element of a certain rank two free subgroup of MCG2(T ) with a standard element only depending on the ambient space. As notable examples, we obtain a representation of this...
متن کاملThe space of Kleinian punctured torus groups is not locally connected
We show that the space of Kleinian punctured torus groups is not locally connected.
متن کامل